Skip to main content
https://www.highperformancecpmgate.com/rgeesizw1?key=a9d7b2ab045c91688419e8e18a006621

4 things to remember when adapting AI/ML learning models during a pandemic

The machine learning and AI-powered tools being deployed in response to COVID-19 arguably improve certain human activities and provide essential insights needed to make certain personal or professional decisions; however, they also highlight a few pervasive challenges faced by both machines and the humans that create them.

Nevertheless, the progress seen in AI/machine learning leading up to and during the COVID-19 pandemic cannot be ignored. This global economic and public health crisis brings with it a unique opportunity for updates and innovation in modeling, so long as certain underlying principles are followed.

Here are four industry truths (note: this is not an exhaustive list) my colleagues and I have found that matter in any design climate, but especially during a global pandemic climate.

Some success can be attributed to chance, rather than reasoning

When a big group of people is collectively working on a problem, success may become more likely. Looking at historic examples like the 2008 Global Financial Crisis, there were several analysts credited with predicting the crisis. This may seem miraculous to some until you consider that more than 200,000 people were working in Wall Street, each of them making their own predictions. It then becomes less of a miracle and more of a statistically probable outcome. With this many individuals simultaneously working on modeling and predictions, it was highly likely someone would get it right by chance.

Similarly, with COVID-19 there are a lot of people involved, from statistical modelers and data scientists to vaccine specialists, and there is also an overwhelming eagerness to find solutions and concrete data-based answers. Following appropriate statistical rigor, coupled with machine learning and AI, can improve these models and decrease the chances of false predictions that arrive from too many predictions being made.

Automation can help in maintaining productivity if used wisely

During a crisis, time-management is essential. Automation technology can be used not only as part of the crisis solution, but also as a tool for monitoring productivity and contributions of team members working on the solution. For modeling, automation can also greatly improve the speed of results. Every second a piece of software can perform automation for a model, it allows a data scientist (or even a medical scientist) to conduct other more important tasks. User-friendly platforms in the market now give more people, like business analysts, access to predictions from custom machine learning models.

Comments

Popular posts from this blog

Uber co-founder Garrett Camp steps back from board director role

Uber co-founder Garrett Camp is relinquishing his role as a board director and switching to board observer — where he says he’ll focus on product strategy for the ride hailing giant. Camp made the announcement in a short Medium post in which he writes of his decade at Uber: “I’ve learned a lot, and realized that I’m most helpful when focused on product strategy & design, and this is where I’d like to focus going forward.” “I will continue to work with Dara [Khosrowshahi, Uber CEO] and the product and technology leadership teams to brainstorm new ideas, iterate on plans and designs, and continue to innovate at scale,” he adds. “We have a strong and diverse team in place, and I’m confident everyone will navigate well during these turbulent times.” The Canadian billionaire entrepreneur signs off by saying he’s looking forward to helping Uber “brainstorm the next big idea”. Camp hasn’t been short of ideas over his career in tech. He’s the co-founder of the web 2.0 recommendatio...

Drone crash near kids leads Swiss Post and Matternet to suspend autonomous deliveries

A serious crash by a delivery drone in Switzerland have grounded the fleet and put a partnership on ice. Within a stone’s throw of a school, the incident raised grim possibilities for the possibilities of catastrophic failure of payload-bearing autonomous aerial vehicles. The drones were operated by Matternet as part of a partnership with the Swiss Post (i.e. the postal service), which was using the craft to dispatch lab samples from one medical center for priority cases. As far as potential applications of drone delivery, it’s a home run — but twice now the craft have crashed, first with a soft landing and the second time a very hard one. The first incident, in January, was the result of a GPS hardware error; the drone entered a planned failback state and deployed its emergency parachute, falling slowly to the ground. Measures were taken to improve the GPS systems. The second failure in May, however, led to the drone attempting to deploy its parachute again, only to sever the line...

How the world’s largest cannabis dispensary avoids social media restrictions

Planet 13 is the world’s largest cannabis dispensary. Located in Las Vegas, blocks off the Strip, the facility is the size of a small Walmart. By design, it’s hard to miss. Planet 13 is upending the dispensary model. It’s big, loud and visitors are encouraged to photograph everything. As part of the cannabis industry, Planet 13 is heavily restricted on the type of content it can publish on Instagram, Facebook and other social media platforms. It’s not allowed to post pictures of buds or vapes on some sites. It can’t talk about pricing or product selection on others.   View this post on Instagram   A post shared by Morgan Celeste SF Blogger (@bayareabeautyblogger) on Jan 25, 2020 at 7:54pm PST Instead, Planet 13 encourages its thousands of visitors to take photos and videos. Starting with the entrance, the facility is full of surprises tailored for the ‘gram. As a business, Planet 13’s social media content is heavily restricted a...